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ABSTRACT 
Safety Performance Functions (SPFs) are the main building blocks in understanding the rela-
tionships between crash risk factors and crash frequencies. Many research e˙orts have focused
on high-volume roadways that typically experience more crashes. A few studies have docu-
mented SPFs for non-federal aid system (NFAS) roads including rural minor collectors, rural
local roads, and urban local roads. NFAS roads are characterized by unique features such as
lower speeds, and shorter segment lengths, and they usually experience fewer crashes given the
low exposure of these roads. As a result, there is a clear need to investigate the associated safety
issues of NFAS roadways and generate distinct SPFs for them. The main objective of this study
is to bridge the gap in the literature and develop SPFs for NFAS roads. This study examined
the application of traditional negative binomial and zero-favored negative binomial models (i.e. 
Negative Binomial-Lindley). Both groups of models were formulated by di˙erent variance and
dispersion structures. Using crash, roadway inventory, and traÿc volume data from 2014-2018
in Virginia, the results showed that the NB-L models perform better than the traditional NB mod-
els. Furthermore, an appropriate variance structure along with a reasonably chosen dispersion
function can further improve the model performance. 

28 1. Introduction 

29 Non-federal aid system (NFAS) roads are categorized into three functional classes: rural minor collectors (6R), 
30 rural local (7R), and urban local roads (7U). These roadways are not considered high-volume roads, but they account 
31 for more than 75 percent of the total roadway mileage in the country. As a result, evaluating the safety performance of 
32 these roadways is of high importance. 
33 A safety performance function (SPF) is a statistical model (more specifcally a crash-frequency model) that esti-
34 mates the average crash frequency for a specifc facility type under certain base conditions (HSM, 2010). In general, 
35 SPFs are developed using roadway characteristics and observed crash data at facilities of the same type with similar 
36 geographical and geometrical characteristics over a certain period of time. Materials included in part C of the Highway 
37 Safety Manual (HSM) intend to provide a basic understanding of predictive methods to estimate the expected average 
38 crash frequency of a facility (segment or intersection) using roadway characteristics, such as annual average daily traf-
39 fc (AADT), segment length, number of lanes, etc. However, the HSM only provides SPFs for three facility types, (1) 

<Corresponding author 
a.khodadadi1994@tamu.edu (A. Khodadadi); i-tsapakis@tti.tamu.edu (I. Tsapakis); s-das@tti.tamu.edu (S. Das); 

dlord@civil.tamu.edu (D. Lord); eli@vtti.vt.edu (Y. Li) 
ORCID(s): 0000-0002-3413-8687 (A. Khodadadi) 

Khodadadi et al.: Preprint submitted to Elsevier Page 1 of 21 

mailto:eli@vtti.vt.edu
mailto:dlord@civil.tamu.edu
mailto:s-das@tti.tamu.edu
mailto:i-tsapakis@tti.tamu.edu
mailto:a.khodadadi1994@tamu.edu


40 rural two-lane two-way roads, (2) rural multi-lane highways, and (3) urban and suburban arterials. These roadways are 
41 categorized as high-volume roads that are more likely to pose safety challenges. Compared to high-speed and high-
42 volume roadways, fewer research studies have been done to develop SPFs for lower functional classes. This is primarily 
43 attributed to inadequate or unavailable traÿc information about these roads. The high cost and time-consuming task 
44 of data collection can limit local agencies ability to conduct safety improvement programs for lower functional classes. 
45 However, as of 2016, the U.S. Department of Transportation requires states to collect traÿc volume information for 
46 all public paved roads, including both federal aid system (FAS) and NFAS roads. Having AADT data collected or 
47 estimated from the short term count or permanent sites, regardless of the sampling techniques or estimation method, 
48 can signifcantly clear the way to conduct data-driven safety analysis and introduce advanced measures to evaluate the 
49 safety performance of NFAS roads. 
50 Although not much research has focused on the development of the SPFs for NFAS roads, some studies have 
51 attempted to analyze the safety issues related to low-volume roads, which are a large part of NFAS roads (Das et al., 
52 2019). Zegeer et al. (1994) attempted to quantify the e˙ect of roadway width on low-volume (AADT<2000 vehicle 
53 per day or vpd) rural roadway crashes. They found that wider roadways, the presence of a shoulder, and paving 
54 roadways with volume higher than 250 vpd can signifcantly improve safety on rural low-volume roads. Stamatiadis 
55 et al. (1999) tried to determine the infuential factors of crashes on low-volume roadways. They observed that crash 
56 frequency on low-volume roadways is a function of the same parameters as found e˙ective in other roadway functional 
57 classes. Cook (2010) employed three di˙erent segmentation methods, and for each method established four di˙erent 
58 SPFs for very low-volume roadways, split into four classes (paved 1-99 vpd, paved 100-400 vpd, unpaved 1-99 vpd, 
59 and unpaved 100-400 vpd). Roadway length, AADT, lane width, shoulder width, shoulder type, and terrain were the 
60 variables that the authors initially considered to develop SPFs. Dell’Acqua and Russo (2011) subcategorized low-
61 volume (AADT<1000 vpd) rural roads into rolling/fat and mountainous terrain and developed two separate models to 
62 predict the number of crashes as a function of environmental, geometrical, and roadway characteristics. The authors 
63 found that lowering speed limit and changing curvature rate and roadway width might lower crash density on low-
64 volume roads. Stapleton et al. (2019) utilized the mixed e˙ect negative binomial regression model to develop SPFs for 
65 rural low-volume intersections (major AADT<2000 vpd). They compared the developed SPFs with the base models 
66 reported in the HSM and observed that the HSM models overpredict crash frequency at both four-leg and three-leg 
67 stop-controlled intersections. Using crash data and estimated traÿc volumes from the North Carolina local network, 
68 Das et al. (2019) aimed to predict crash frequency for each category of NFAS roads, separately. This study developed 
69 SPFs for 6R, 7R, and 7U road types, as a function of roadway length and traÿc volume data. They also found that 
70 AADT estimation error can a˙ect the predicted number of crashes occurring on these roadways. 
71 As mentioned above, the HSM’s SPFs are limited to specifc high-volume and high-speed roadways and may not 
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72 be transferable to lower road classes. On the other hand, previous studies did not perform an in-depth investigation 
73 to quantify the safety performance of the NFAS roads. To the best of our knowledge, except for the study conducted 
74 by Das et al. (2019), no other studies have attempted to develop distinct SPFs for NFAS roads, but rather for low-
75 volume roadways that may or may not be classifed as the same road type as NFAS roadways. Furthermore, previous 
76 studies utilized traditional count models to develop SPFs for low-volume roadways and did not examine more advanced 
77 and innovative models that are capable of accounting for unique characteristics of crash data, such as having a large 
78 proportion of zeros in the dataset. Also, NFAS roads are characterized by unique features such as lower speeds (35-
79 55 and 20-45 mph for collector and local roads, respectively), shorter segment lengths, and fewer crashes given the 
80 exposure (i.e., data characterized by low sample mean values). Therefore, there is a clear need to further investigate 
81 the safety performance of the NFAS roads and generate distinct SPFs for these roadways using more advanced models 
82 for comparison with traditional model formulations. 
83 Generalized linear models, and more specifcally, the negative binomial (NB) regression models have been exten-
84 sively used in SPF development. The negative binomial or Poisson-Gamma mixture distribution is the generalization 
85 of the Poisson distribution and has been considered the most popular model in highway safety (Lord and Mannering, 
86 2010; Lord et al., 2021). The NB distribution eases the assumption of equality of the mean and variance held in the 
87 Poisson regression model. In general, the negative binomial model allows for the variance to be higher than the mean 
88 in order to capture the variation in the dataset. This ability can be further improved by changing the variance and dis-
89 persion structure, or mixing the NB distribution with other distributions. In the following, each of these improvements 
90 is discussed in detail. 
91 

92 • Dispersion structure: the dispersion parameter in the NB model allows for the variance to be greater than the 
93 mean by forming a quadratic relationship between the mean and the variance. Although past studies assumed 
94 that the dispersion parameter is invariant of roadway features, recent fndings confrm that the dispersion pa-
95 rameter varies from site to site and is dependent upon site characteristics such as segment length and AADT 
96 (Geedipally et al., 2009; Lord and Park, 2008; Cafso et al., 2010). In another study, Lord and Park (2008) con-
97 ducted an Empirical Bayes (EB) method using both fxed and varying dispersion parameters to rank hazardous 
98 sites. They employed di˙erent functional forms of the dispersion parameters in the NB models and concluded 
99 that the varying dispersion parameter provides a better statistical ft. Cafso et al. (2010) investigated the as-

100 sociation between rural roadway length and the dispersion parameter and found that the dispersion parameter 
101 variation is more signifcant for shorter segments. Also, Geedipally et al. (2009) used three di˙erent datasets 
102 to empirically examine the e˙ect of the varying dispersion structures. They evaluated ten di˙erent structures as 
103 functions of roadway length and AADT. The authors concluded that selecting a suitable functional form and an 
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104 appropriate combination of covariate sets for the dispersion structure greatly depends on the dataset being used. 
105 In another study, Meng et al. (2020) attempted to develop SPFs with both fxed and varying dispersion parameter 
106 for unsignalized intersections in Texas. The authors found that similar to the segment SPFs, intersection SPFs 
107 are also improved when using the varying dispersion parameters. 
108 

109 • Variance structure: besides the relationship between roadway characteristics and the dispersion parameter, the 
110 type of mean-variance relationship that the dispersion parameter makes is of importance as well. The dispersion 
111 parameter in the NB model allows for the variance to be higher than the mean by forming a quadratic relation-
112 ship between the mean and variance. Di˙erent variance structures lead to di˙erent parameterizations of the NB 
113 distribution. Cameron and Trivedi (2013) proposed two popular forms of the NB distribution, called NB-1 and 
114 NB-2 (the latter usually referred to as NB), in which the digit refers to the exponent of the mean value multiplied 
115 by the dispersion parameter in the mean-variance equation. Pei et al. (2011), Mehta and Lou (2013) and Wang 
116 et al. (2019) employed both the NB-1 and NB-2 to model crash frequency for di˙erent severity levels and to 
117 develop SPFs, respectively. They all concluded that the NB-1 does not perform better than the NB-2, which 
118 supported the fndings of Lord et al. (2012), indicating that the NB-1 is less fexible to capture the large vari-
119 ations existing in the crash data. Both NB-1 and NB-2 parameterizations are nested in an unrestricted general 
120 model, entitled as NB-P, which does not restrict the variance structure (Greene, 2008). Ismail and Zamani (2013) 
121 assessed the application of di˙erent variance structure of di˙erent count models, such as the Poisson and NB 
122 model, in the over and under dispersed data condition. They concluded that the NB-P model outperforms other 
123 NB parameterizations. Also, Wang et al. (2019) found that the NB-P provides more fexibility to the model, and 
124 hence is preferable over the NB-1 and NB-2 when developing SPFs for rural intersections. They concluded that 
125 the variance structure of the NB-P model could even capture some of the variations in the dispersion parameter. 
126 

127 • Mixture distribution: although the NB regression model accounts for the built-in dispersion in crash data, crash 
128 datasets are naturally characterized by unique features such as having a large number of zeros or a heavy tail, 
129 which the traditional NB models cannot eÿciently deal with. To overcome this problem, Lord and Geedipally 
130 (2011) and Geedipally et al. (2012) examined the application of the NB and Lindley mixture distribution (NB-
131 L) introduced by Zamani and Ismail (2010), in crash data analysis 1. They found that the NB-L model, while 
132 preserving the NB characteristics, provides a better ft compared to the traditional NB models for the datasets 

1The NB-L has been proposed as an alternative to the application of zero-infated (ZI) models for handling datasets with a large percentage
of zero responses. The NB-L model o˙ers a single mean function that is never equal zero, which is not the case for the ZI model. This and other
limitations have not only been documented in highway safety (Lord et al., 2005, 2007), but in various other felds, such as environmental science,
substance abuse, criminology and social sciences. Additional discussion can be found in Chapter 3 of Lord et al. (2021) 
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133 su˙ering from a large proportion of zeros or high dispersion problems. 
134 

135 All the above-mentioned regression models could be estimated in either frequentist or Bayesian framework. The 
136 superiority of the Bayesian paradigm has been documented in the literature from di˙erent points of view. First of all, 
137 when limited data is available, the full Bayesian (FB) method can yield unbiased estimates by incorporating common 
138 Beliefs (prior distribution) about the variable of interest into the analysis (Heydari et al., 2014; Lord and Miranda-
139 Moreno, 2008). Also, despite frequentist analysis, which requires a considerable number of repeated random trials to 
140 build the confdence intervals, Bayesian methods represent the hypothesis uncertainty in a natural probabilistic way 
141 and attach it to the modeling procedure. Moreover, as the hierarchy level grows and the data structure gets more 
142 complex, the frequentist method needs more computational e˙ort to fnd a closed-form of the distribution or employ a 
143 simulation-based solution; however, Bayesian methods can take advantage of both, Bayes theorem and its hierarchical 
144 nature to easily draw samples from the posterior distribution of the parameter of interest using the Markov Chain Monte 
145 Carlo (MCMC) simulation (Heydari et al., 2014; Lord et al., 2021). Full Bayesian paradigm has been extensively 
146 used in various settings including the hierarchical Poisson model (Pawlovich et al., 2006), NB model (Heydari et al., 
147 2014; Farid et al., 2017), Poisson log-normal model (Aguero-Valverde and Jovanis, 2009), and NB-L model (Lord and 
148 Geedipally, 2011; Geedipally et al., 2012) for various crash analysis such as crash frequency prediction, site ranking, 
149 and SPF development. 

150 1.1. Study Objective 

151 The main objective of this study is to apply di˙erent forms of count models to develop SPFs for NFAS roads. Given 
152 the share of NFAS roads from the total roadway mileage, accurately quantifying the safety issues of these roadways 
153 can considerably contribute to more robust safety analysis and e˙ective decision making. The next section describes 
154 the formulation and hierarchical representation of the NB models that were examined in this study. 

155 2. Methodology 

156 The most common methods that are used by researchers to develop SPFs are the Poisson and Poisson-gamma 
157 regression models (Lord et al., 2005). The Poisson-gamma mixture or NB distribution is the generalization of the 
158 Poisson distribution, which eases the assumption that the mean and variance are equal by introducing the dispersion 
159 parameter to the model. As mentioned in the previous section, both the variance structure and the dispersion parameter 
160 can be formulated in di˙erent ways leading to the various NB parameterizations. The following subsection discusses 
161 the various NB formulations derived from di˙erent variance structures. Then, the NB-L model is presented, which 
162 introduces more fexibility to the traditional NB model. The last subsection presents di˙erent functional forms of the 
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� �

163 dispersion structure to better capture the variation in dispersion parameter across the road segments. 

164 2.1. NB-2 

165 The NB-2 is the most common form of the NB models. The hierarchical representation of the NB-2 is described 
166 as follows (Heydari et al., 2014): 

Yi í P oisson(�i) 

�i = �iri (1) 
ri í Gamma(�, �) 

1 
167 Where, � is the inverse dispersion parameter (i.e., = is the dispersion parameter), and �i = exp( iXi) is the mean � 

168 response crash frequency which is an exponential function of roadway characteristics. As seen, the NB model allows 
169 for inter-observation heterogeneity by multiplying a gamma distributed error term, ri, to the mean function. After 
170 Integrating the prior out of the Poisson-gamma joint distribution, we obtain the following probability density function 
171 with the mean, and variance functions as follows: 

�(� + yi) � �iP (Y |�, �) = ( )�( )yi (2)
�(�)yi! � + �i �i + � 

E(yi) = �i (3) 
iV ar(yi) = �i + 

�2 

(4)
� 

172 As described in Eq.(4), the NB-2 model assumes that there is a quadratic association between the mean and the variance 
173 through the inverse dispersion parameter. 

174 2.2. NB-1 

175 The other commonly used formulation of the NB model is shown in Eq.(5). The NB-1 model assumes that there 
176 is a constant ratio linking the mean and the variance of the crash frequencies. This could be achieved by replacing the 
177 inverse dispersion parameter, �, with ��i in Eq.(4). The NB-2 model assumes that there is only one fxed dispersion 
178 parameter in the entire dataset, while the NB-1 adjusts the dispersion parameter for each site, individually. This adjust-
179 ment leads to a di˙erent parameterization of the NB model which also preserves the conditional mean. The probability 
180 density function, mean, and variance of the NB-1 model can be written as follows (Greene, 2008): 

�(��i + yi) ��iP (Y |�, �) = ( )��i ( 
�i )yi (5)

�(��i)yi! ��i + �i �i + ��i 
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E(yi) = �i (6) 
i �iV ar(yi) = �i + 

�2
= �i + (7)

��i � 

181 2.3. NB-P 

182 A more general type of the NB model is the NB-P model, which does not constrain the mean-variance relationship. 
183 As seen in Eq.(10), the exponent of the mean, �i, in the mean-variance relationship can take any value. Similar to the 
184 NB-1 model, this formulation also makes an adjustment to the dispersion parameter of each site while maintaining 
185 the conditional mean. The probability density function, mean and variance of the NB-P distribution can be derived as 
186 follows (Greene, 2008): 

2−p 2−p�(��i + yi) ��i )��
2−p �iP (Y |�, �) = ( i ( )yi (8)

2−p 2−p 2−p�(�� )yi! �� + �i �i + ��i i i 

E(yi) = �i (9) 
�2 �p 
i iV ar(yi) = �i + 
2−p 

= �i + (10)
���i 

187 2.4. NB-L 

188 To deal with the unique and problematic characteristics of crash data such as excess zeros and having a long heavy 
189 tail, extensions of the NB model have been proposed, which o˙er a more fexible structure to the original model in 
190 order to deal with problematic datasets. In this regard, Zamani and Ismail (2010) proposed the use of the mixture 
191 of NB and Lindley distribution to analyze a highly dispersed dataset characterized by a large number of zeros and a 
192 heavy tail. This model, also referred to as a multi-parameter model (Lord and Geedipally, 2018), under a hierarchical 
193 Bayesian framework can be described as follows (Geedipally et al., 2012): 

P (Y = y, �i, �|�) = NB(y; �, ��i) (11) 
� í Lindley(�) 

194 Where, � is the Lindley distribution parameter. The Lindley distribution is a mixture of the exponential and gamma 
195 distribution (Zamani and Ismail, 2010). The probability density function and the mean structure of the Lindley distri-
196 bution can be written as follows: 

P (E = �|�) í 
�2 

(1 + �)e−�x; � > 0 (12)
� + 1 
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� + 2 E(�) = (13)
�(� + 1) 

197 The NB-L formulation then could be derived by integrating the Lindley prior out of the NB and Lindley joint distri-
198 bution: 

P (Y = y, �, �, �) = Ê 
NB(y; �, ��)Lindley(�, �) d� (14) 

199 The conditional mean and variance of the NB-L distribution then can be given as: 

� + 2 E(yi) = �iE(�) = �i (15)
�(� + 1) 

� + 2 2(� + 3) 1 + � � + 2 V ar(yi) = �i + �2 ( ) ( ) − (�i )2 (16)i�(� + 1) �2(� + 1) � �(� + 1) 

200 As seen in Eq.(16), despite the NB-1, NB-2, and NB-P models (from now on referred to as traditional NB models), in 
201 which the variation is only explained by the dispersion parameter, part of the variability in the NB-L model is captured 
202 by the mixed Lindley distribution. This could o˙er even more fexibility to the model to capture further variations in the 
203 dataset. Similar to the traditional NB models, the NB-L can also be formulated with di˙erent variance structures. The 
204 NB1-L, NB2-L, and NBP-L are the counterparts of the traditional NB models, which take advantage of two sources 
205 of variation, the dispersion parameter, and the mixed Lindley distribution. Similar to the NB-P, the NBP-L is the most 
206 general formulation of the NB-L models. Given ki = ��2−p, the hierarchical representation of the NBP-L model could i 

207 be formulated as follows: 

P (Y = y, �i, ki|�) = NB(y; ki, ��i) (17) 
� í Lindley(�) 

208 2.5. Dispersion parameter functional form 

209 So far, six NB models with di˙erent parameterizations and di˙erent variance structures have been discussed. Each 
210 functional form of the NB could be formulated with a fxed or varying dispersion parameter. In this study, four di˙er-
211 ent parameterizations of the inverse dispersion parameter (�) were evaluated. These functional forms were selected 
212 according to the best formulations proposed by Geedipally et al. (2009). In addition, Cafso et al. (2010) mentioned 
213 that in shorter segments, variability of the dispersion parameter matters more. Also NFAS roads are basically charac-
214 terized by short segment lengths. Consequently, this study ensured that segment length is included in all the functional 
215 forms selected from the ones proposed by Geedipally et al. (2009). For all the six models, a fxed, and the following 
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216 functional forms of the inverse dispersion parameter, �, were modeled and examined: 

�1 �2� = e�0 < AADT < L (18)i i 

�1� = e�0 < AADT < Li (19)i 

�2� = e�0 < L (20)i 

� = e�0 < Li (21) 

217 Where, the �’s are the parameters needed to be estimated and L is the segment length. 
218 It should be pointed out that the varying dispersion function may not be needed as the number of parameters used 
219 with the mean function increases. Mitra and Washington (2007) indicated that as the mean function gets better defned, 
220 the dispersion function becomes less structured or may even become fxed for well-defned mean functions. However, 
221 recent research on this topic by Zou et al. (2014) indicates that the varying dispersion function may be data dependent 
222 rather than dependent on the mean function. Even with a well-defned mean function, the variance was still structured 
223 and dependent on the covariates included in the model according to the dataset used in their study. 

224 2.6. Parameter estimation 

225 To generate valid posterior inferences, a full Bayesian approach was utilized. The FB method can incorporate all 
226 the information and prior knowledge into a single hierarchical model and yield robust estimates even when limited data 
227 is available. Since the Lindley distribution is not a standard distribution to draw samples from, a simpler formulation 
228 of the NB-L was used. According to this formulation, the Lindley distribution could be parameterized as a sum of two 
229 gamma distributions with the mixture components following the Bernoulli distribution. The equivalent hierarchical 
230 representation of the Lindley distribution can be shown as follows (Zamani and Ismail, 2010): 

� í Gamma(1 + z, �) (22) 
1 z í Bernoulli( )

1 + � 

231 Moreover, the FB method requires to specify the prior distribution on all the unknown hyper-parameters to combine 
232 the data likelihood with the past evidence. This study assumed a non-informative normal prior for the regression 
233 coeÿcients of the mean and the varying dispersion function, and a gamma prior on the fxed dispersion parameter, 
234 1_�. Furthermore, priors should be chosen to preserve the identifability of the model. In the NB-L model, as seen in 
235 Eqs.(15) and (16), both conditional mean and variance are adjusted by the Lindley parameter, �. As a result, expectation 
236 of � should be equal to one to preserve the conditional mean and ensure the identifability issue. As suggested in 
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NShaon et al. (2018) and Geedipally et al. (2012), a Beta ( N ) would be a good prior distribution on (1_1 + �) since it 237 3 
, 2 

238 guarantees E(�) = 1, and is also relevant to the likelihood function through the parameter N (number of observations). 
239 Having specifed the hierarchical joint model, we can draw random samples from the posterior distribution of the 
240 unknown parameters using the MCMC method. Depending on the availability of the full conditional distribution of the 
241 unknown parameter given the other parameters, Gibbs sampling method or otherwise, Metropolis-Hasting algorithm 
242 can be used to draw random samples from the posterior distribution. In this study, an open-source R package, called 
243 "rjags", was used to conduct MCMC analysis (Plummer et al., 2016). All the proposed models were implemented in 
244 the Bayesian framework. A total of three Markov chains, each containing 50,000 iterations, were run to make sure the 
245 convergence is achieved. The frst 10,000 samples of each chain were considered as burn-in samples, and the remaining 
246 samples were used to estimate the unknown coeÿcients. Also, to mitigate the possible sample auto-correlation, out of 
247 three successive samples, only one sample was stored for estimation. 

248 3. Data description 

249 Virginia roadway information, traÿc volume, and crash data from the Virginia Department of Transportation 
250 (VDOT) were gathered, processed, and integrated in order to develop SPFs for NFAS roads. Roadway inventory 
251 attributes such as lane width, shoulder width, number of lanes, etc., were, unfortunately, missing for a considerable 
252 number of segments. It is important to note that the data used in this study are collected from NFAS roadways which 
253 are mostly known as local roadways with low volume (2000 vpd or lower). Low-volume roadway inventory data are 
254 not usually well maintained and there are many missing geometric data such as horizontal and vertical curvature, 
255 shoulder width, etc. The other possible covariates available in the dataset were the percentage of trucks, and the per-
256 centage of buses in the roadways, which turned to be insignifcant in all the regression models. The only reliable and 
257 available variables were segment length and AADT, which match with the basic variables used by the HSM. So, this 
258 study used fow-only models to make SPFs similar to the ones found in the HSM. Out of 92,834 reported crashes 
259 and 117,863 roadway information collected from 2014 to 2018 (latest dataset available), 3,708 NFAS roadways, and 
260 corresponding 14,212 crashes were identifed. Finally, after excluding the missing records, outliers, roadways with 
261 low-quality AADT counts (count estimates labeled as poor quality by the VDOT), and intersection related crashes, the 
262 fnal database, including a fve-year period information on 2,598 segments and 5,856 crashes was obtained. Nearly 
263 37% of the roadways did not experience any crash during the fve years. Table 1 present the summary statistics of the 
264 input data that was used to develop SPFs. Descriptive statistics are summarized for both categorized data (based on 
265 the roadway functional classes), and all NFAS roads. 
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�

Table 1 
Summary Statistics of Virginia Data 
Roadway Functional Class Variable Min Max Average (Std.dev) Skewness 

Number of Crashes 0 33 2.25 (3.22) 2.83 
All NFAS roads AADT over 5 years (vpd) 8 2347 589 (434.6) 
(N = 2598) Segment Length (miles) 0.1 5.73 1.374 (1.20) 

Number of Crashes 0 33 2.75 (3.55) 2.59 
Rural Minor Collector AADT over 5 years (vpd) 21 2346 584.04 (395.9) 
(N = 1778) Segment Length (miles) 0.1 5.73 1.59 (1.20) 

Number of Crashes 0 17 1.32(2.16) 2.85 
Rural Local AADT over 5 years (vpd) 8 2093 379.22 (333.87) 
(N = 455) Segment Length (miles) 0.1 5.7 1.28 (1.18) 

Number of Crashes 0 14 0.98 (1.76) 3.31 
Urban Local AADT over 5 years (vpd) 9 2347 874.8 (553.4) 
(N = 365) Segment Length (miles) 0.1 4.52 0.4 (0.48) 

266 4. Modeling results 

267 This section describes the details of the SPF modeling results. In total, six count models, including the NB-1, NB-
268 2, NB-P, NB1-L, NB2-L, and NBP-L, each with fve di˙erent dispersion structures, were developed and run. Segment 
269 length and AADT were included in the SPF models as the possible covariates. Segment length was considered as 
270 a separate covariate rather than an o˙set since its estimate was statistically di˙erent from one. It should be pointed 
271 out that, even though this study only used segment length and AADT, the omitted-variable bias is not critical in this 
272 study since the models were compared using the same dataset and functional form (i.e., the link between the dependent 
273 and independent variables). Also, to make the MCMC process faster and overcome the poor convergence resulting 
274 from the multicollinearity issue (Shaon et al., 2018), the standardized covariates were input for estimation and then 
275 transformed back to the original scale. 
276 Tables 2 to 4 summarize the estimation results for each NB model with fxed, AADT and length dependent, and 
277 length-only dependent dispersion structure, respectively. The frst and second part of each table provides estimates for 
278 the mean function coeÿcients, ’s, and the dispersion function coeÿcients, �’s, respectively. For the models associated 
279 with a fxed dispersion structure, the inverse dispersion parameter is also reported only for those models that follow 
280 the original NB distribution structure without any adjustment to the dispersion structure (i.e., NB2 and NB2-L). The 
281 last part demonstrates the performance evaluation metrics for evaluation and comparison purposes. 
282 This study used the Bayesian counterpart of the confdence interval, credible interval, to test the signifcance of the 
283 parameters. The coeÿcients, which their highest posterior density credible interval (HPD credible interval) included 
284 zero at 5% level, were underlined in Tables 2 to 4. 
285 In regards to the mean function parameters, both AADT and segment length had a signifcant positive infuence on 
286 the crash frequency, which confrms the previous fndings regarding SPFs for low-volume roadways (Das et al., 2019; 
287 Cook, 2010; Stamatiadis et al., 1999; Dell’Acqua and Russo, 2011; Zegeer et al., 1994). As opposed to the coeÿ-
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Table 2 
Model Estimation Results (fxed dispersion structure) 
Variable NB-1 NB-2 NB-P NB1-L NB2-L NBP-L 
Intercept ( 0)Ln(AADT) ( 1)Length ( 2) 
� 
� 
P 
WAIC 
LOO 
MAD 
MASE 
Log-likelihood 

-4.07 (0.18) 
0.63 (0.03) 
0.56 (0.01) 

-
-
-

8296 
8296 
1.25 
0.55 
-4096 

-4.41 (0.20) 
0.65 (0.03) 
0.65 (0.01) 
3.12 (0.25) 

-
-

8232 
8232 
1.25 
0.56 
-4064 

-4.41 (0.20) 
0.65 (0.03) 
0.65 (0.02) 

-
-

1.94 (0.11) 
8234 
8234 
1.26 
0.56 
-4064 

-4.46 (0.26) 
0.64 (0.09) 
0.68 (0.02) 

-
1.41 (0.06) 

-
7612 
8112 
1.15 
0.57 
-3290 

-4.47 (0.26) 
0.65 (0.09) 
0.68 (0.02) 
17.54 (3.10) 
1.41 (0.06) 

-
7640 
8174 
1.16 
0.57 
-3312 

-4.46 (0.26) 
0.64 (0.09) 
0.68 (0.02) 

-
1.41 (0.06) 
0.57 (0.38) 

7619 
8132 
1.16 
0.56 
-3287 

NB2-L NBP-L 

¨ 
288 cients of the mean function, s, some coeÿcients of the dispersion function, � ̈ s, were neither signifcant nor similar 
289 across the modeling approaches. As illustrated in Table 3, the estimates for the intercept and AADT coeÿcient of the 
290 dispersion function, �0 and �1, were not statistically signifcant at 5% signifcance level when using the NB-L models 
291 with AADT and length dependent dispersion structure. On the other hand, as shown in Tables 2 to 4, the magnitude 

Table 3 
Model Estimation Results (AADT and length dependent dispersion structure) 
Variable NB-1 NB-2 NB-P NB1-L 

�1 �2Functional Form (1): �i = e�0 AADTi LiIntercept ( 0)Ln(AADT) ( 1)Length ( 2) 
� 
P 
�0 

�1 

�2WAIC 
LOO 
MAD 
MASE 
Log-likelihood 

-4.51 (0.19) 
0.72 (0.04) 
0.51 (0.01) 

-
-

4.19 (0.71) 
-0.67 (0.10) 
0.41 (0.12) 

8150 
8150 
1.29 
0.55 
-4070 

-4.51 (0.20) 
0.70 (0.04) 
0.55 (0.02) 

-
-

0.20 (0.68) 
0.07 (0.10) 
0.85 (0.10) 

8089 
8089 
1.28 
0.55 
-4040 

-4.56 (0.20) 
0.70 (0.03) 
0.60 (0.02) 

-
3.48 (0.20) 
-4.93 (0.96) 
1.08 (0.17) 
1.92 (0.17) 

8043 
8043 
1.35 
0.56 
-4017 

-4.41 (0.27) 
0.64 (0.09) 
0.66 (0.02) 
1.39 (0.05) 

-
6.33 (4.57) 
-0.02 (0.67) 
3.65 (1.02) 

7485 
7978 
1.15 
0.56 
-3284 

-4.39 (0.27) 
0.65 (0.09) 
0.63 (0.02) 
1.38 (0.05) 

-
2.72 (3.07) 
0.40 (0.45) 
3.60 (0.64) 

7497 
8018 
1.16 
0.55 
-3310 

-4.50 (0.32) 
0.69 (0.09) 
0.58 (0.02) 
1.39 (0.06) 
3.91 (0.09) 
-2.61 (2.31) 
1.22 (0.33) 
3.65 (0.4) 
7564 
7981 
1.29 
0.55 
-3373 

Functional Form (2): �i = e�0 AADTi
�1 Li

Intercept ( 0)Ln(AADT) ( 1)Length ( 2) 
� 
P 
�0 

�1 

�2WAIC 
LOO 
MAD 
MASE 
Log-likelihood 

-4.54 (0.18) 
0.74 (0.03) 
0.47 (0.01) 

-
-

3.87 (0.73) 
-0.62 (0.10) 

-
8170 
8170 
1.38 
0.57 
-4081 

-4.52 (0.19) 
0.71 (0.03) 
0.54 (0.01) 

-
-

-0.05 (0.64) 
0.11 (0.09) 

-
8087 
8087 
1.30 
0.55 
-4041 

-4.52 (0.20) 
0.69 (0.03) 
0.60 (0.02) 

-
2.56 (0.10) 
-1.21 (0.66) 
0.38 (0.10) 

-
8066 
8067 
1.30 
0.56 
-4030 

-4.48 (0.26) 
0.65 (0.09) 
0.68 (0.02) 
1.39 (0.05) 

-
6.48 (11.24) 
-0.08 (1.75) 

-
7482 
7981 
1.15 
0.57 
-3274 

-4.51 (0.27) 
0.65 (0.09) 
0.68 (0.02) 
1.41 (0.06) 

-
8.36 (12.67) 
-0.29 (1.97) 

-
7489 
8030 
1.16 
0.57 
-3281 

-4.56 (0.28) 
0.65 (0.09) 
0.77 (0.03) 
1.42 (0.07) 
3.93 (0.06) 
-5.34 (2.06) 
1.77 (0.33) 

-
7672 
8055 
1.24 
0.64 
-3385 
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Table 4 
Model Estimation Results (length-only dependent dispersion structure) 
Variable NB-1 NB-2 NB-P NB1-L 

�2 �0Functional Form (3): �i = Li e 

NB2-L NBP-L 

292 of the coeÿcients of the dispersion function vary markedly across the models. The di˙erences in signifcance and 
293 magnitude of �’s could be partially attributed to the di˙erent variance structures in the models. The NB-1, NB-2, and 
294 NB-P models, each has a specifc structure to capture the variation. Introducing the Lindley distribution to the NB 
295 models makes the variance structure even more complex since it provides the model with additional complexity and 
296 hence, more fexibility. Therefore, the source of variation in each model is di˙erent, which makes it diÿcult to compare 
297 the dispersion coeÿcients, individually. Moreover, as seen in Table 3 and Table 4, the sign of the length coeÿcient 
298 is positive in the dispersion functions, indicating that the dispersion parameter, 1_�, and therefore, the unobserved 
299 variation decreases as roadway length increases. These fndings are in line with Hauer (2001) and Cafso et al. (2010), 
300 indicating that shorter segments have higher crash frequency variances. 
301 Models were evaluated based on a combination of di˙erent goodness of ft measures. Two fully Bayesian metrics, 
302 widely applicable information criteria (WAIC) and leave-one-out cross-validation (LOO), along with other commonly 
303 used metrics, were used for performance evaluation and comparison purposes. The superiority of the NB-L models 
304 over the traditional NB models is demonstrated through all the GOF metrics. 

Intercept ( 0)Ln(AADT) ( 1)Length ( 2) 
� 
P 
�0 

�1 

�2WAIC 
LOO 
MAD 
MASE 
Log-likelihood 

-4.09 (0.18) 
0.65 (0.04) 
0.51 (0.01) 

-
-

-0.20 (0.07) 
-

0.50 (0.12) 
8188 
8188 
1.24 
0.55 
-4090 

-4.54 (0.20) 
0.71 (0.04) 
0.55 (0.01) 

-
-

0.70 (0.07) 
-

0.83 (0.10) 
8087 
8087 
1.29 
0.55 
-4040 

-4.52 (0.21) 
0.70 (0.04) 
0.57 (0.02) 

-
2.41 (0.14) 
1.15 (0.17) 

-
0.99 (0.11) 

8081 
8081 
1.29 
0.55 
-4037 

-4.39 (0.26) 
0.64 (0.09) 
0.65 (0.02) 
1.39 (0.05) 

-
6.11 (1.34) 

-
3.75 (0.90) 

7482 
7971 
1.15 
0.56 
-3285 

-4.47 (0.27) 
0.66 (0.09) 
0.63 (0.02) 
1.39 (0.05) 

-
5.24 (1.06) 

-
3.51 (0.62) 

7497 
8015 
1.18 
0.55 
-3313 

-4.72 (0.30) 
0.72 (0.09) 
0.60 (0.02) 
1.39 (0.05) 
0.13 (0.12) 
6.22 (0.63) 

-
3.80 (0.17) 

7535 
7963 
1.27 
0.55 
-3345 

�0Functional Form (4): �i = Lie 
Intercept ( 0)Ln(AADT) ( 1)Length ( 2) 
� 
P 
�0 

�1 

�2WAIC 
LOO 
MAD 
MASE 
Log-likelihood 

-4.14 (0.17) 
0.68 (0.03) 
0.48 (0.01) 

-
-

-0.21 (0.08) 
-
-

8201 
8201 
1.32 
0.57 
-4097 

-4.55 (0.20) 
0.72 (0.03) 
0.53 (0.01) 

-
-

0.69 (0,06) 
-
-

8087 
8087 
1.30 
0.55 
-4041 

-4.52 (0.21) 
0.70 (0.03) 
0.57 (0.02) 

-
2.41 (0.12) 
1.14 (0.16) 

-
-

8079 
8079 
1.30 
0.55 
-4036 

-4.48 (0.26) 
0.64 (0.09) 
0.68 (0.02) 
1.38 (0.05) 

-
5.37 (1.48) 

-
-

7482 
7981 
1.13 
0.56 
-3275 

-4.45 (0.26) 
0.64 (0.08) 
0.68 (0.02) 
1.39 (0.06) 

-
5.88 (1.43) 

-
-

7481 
8024 
1.15 
0.57 
-3277 

-4.74 (0.31) 
0.68 (0.09) 
0.72 (0.03) 
1.39 (0.06) 
3.44 (0.97) 
6.12 (0.81) 

-
-

7625 
8075 
1.22 
0.60 
-3348 
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305 Among the traditional NB models, models with the less restricted mean-variance structure, i.e. NB-2 and NB-P 
306 showed better performance. However, the NB-L models performed better when formulated with less fexible mean-
307 variance relationships, i.e. NB1-L and NB2-L. 
308 All the NB parameterizations with varying dispersion parameters, regardless of the dispersion structure, showed 
309 superior ft compared to the NB parameterizations with fxed dispersion parameters. Moreover, as indicated in Tables 2 
310 to 4, the performance measures vary when employing di˙erent dispersion functions. Given the results, it could be 
311 interpreted that the NB-L models perform better if the length-only dependent dispersion functions are used, whereas 
312 the traditional NB models favor the AADT and length dependent dispersion structures more. 
313 Based on the combination of GOF criteria and also the signifcance of the model coeÿcients, NB1-L and NB2-
314 L with length-only dispersion structure (dispersion structure (3) and (4)) ranked as the best models. As Hauer and 
315 Bamfo (1997) suggested, the cumulative residual (CURE) plot was utilized to assess the model performance by di-
316 rectly analyzing the residuals. The CURE plot of a well-ftted SPF should not include an upward or downward trend or 
317 a noticeable periodicity. It should fuctuate around zero while being in the boundary of two standard deviations (conf-
318 dence interval). Adjusted CURE plot for the NB1-L model, as well as other models with the same dispersion function, 
319 are depicted in Figure 1. All the CURE plots are adjusted to end at zero to make them comparable. In comparison to 
320 the traditional NB models, there are less sudden falls and rises in plots of the NB-L models. Also, the CURE plots 
321 of the NB-L models seem to be within the confdence intervals more often than their traditional counterparts. Aside 
322 from the CURE plots, the unadjusted cumulative residual itself could be a valid indicator of the predictive ability of 
323 the model. The last values of the cumulative residuals (sum of all the residuals) are equal to -235, -298, -339, -3, -26, 
324 -206 for the NB-1, NB-2, NB-P, NB1-L, NB2-L, and NBP-L, respectively. To put it di˙erently, cumulative residual 
325 plot of the NB1-L and NB2-L models converges to zero naturally; whereas, that of the other NB parameterizations are 
326 far away from zero. These fndings are also in line with Shirazi et al. (2017) fndings that the maximum deviation of 
327 the NB-L models are smaller than the NB models. 

328 5. Discussion 

329 This study aimed to develop SPFs for NFAS roads. As these roads commonly have low volumes and short lengths, 
330 their crash statistics could be characterized by specifc features that make it challenging to accurately quantify their 
331 safety performances. As there are not many studies done on these particular roadway classes, there is no commonly 
332 agreed predictive model that performs adequately. This study compared the application of di˙erent count models in 
333 three di˙erent levels; (1) between the traditional NB model and more fexible, zero-favored NB models (i.e., NB-L), (2) 
334 between di˙erent forms of the mean-variance association through the dispersion parameter, and (3) between di˙erent 
335 functional forms of the dispersion parameter. 
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Figure 1: CURE plots for AADT variable (Dotted lines represent ±1.96 std.dev) 

336 As the results showed, regardless of the dispersion structure, all the GOF measures indicated that the NB-L models 
337 provide a better statistical ft. In the dataset analyzed in this study, 37% and 20% of the roadways had recorded zero 
338 and one crashes for a fve year period, respectively. Also, dividing the crash counts by the number of years that data 
339 was collected, we observed that around 78% of the segments have crash frequencies below 0.6 crash per year. This 
340 information confrms Geedipally et al. (2012) fndings that the NB-L models o˙er superior performance for datasets 
341 characterized by a large number of zeros. Also, the results are in line with Shirazi et al. (2017), which showed that for 
342 crash data with skewness higher than 1.92 (2.83 in this study) the NB-L model performs better. 
343 For both groups of traditional NB and NB-L models, di˙erent mean-variance structures were examined as well. 
344 Similar to the results of Wang et al. (2019), the NB-P and NB-2 favored the NB-1 model, regardless of the dispersion 
345 structure. It was not unexpected since the NB-1 model introduces a less fexible variance structure (linear mean-
346 variance relationship) to the model. The NB-P model performed slightly better than NB-2 due to the more fexibility 
347 through the parameter P . However, the improvements were negligible since the estimated P parameter in the NB-P 
348 model was close to 2 in the most cases, which made the NB-P model similar to the NB-2 model (e.g., NB-P with 
349 functional forms (2), (3), and (4)). A di˙erent pattern was observed in the NB-L models. Compared to the NBP-L, 
350 the NB1-L and NB2-L appeared to be better models in terms of almost all the performance measures. These fndings 
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351 showed that even though the NBP-L model o˙ers a more fexible variance structure and more ability to ft to complex 
352 data, it might not always be the best choice. In other words, the choice of the variance structure is not only dependent 
353 upon the dataset being analyzed, but also depends on the formulation of the NB model. These results suggest that, 
354 even though the mixed NB-L distribution provides the model with another source of variation, the variance structure 
355 still matters and should be considered in the SPF development process. 
356 Finally, the e˙ect of using di˙erent dispersion structures was examined. All the models with varying dispersion 
357 parameter outperformed the models with fxed dispersion parameter. These fndings support the results of Miranda-
358 Moreno et al. (2005) and Lord and Park (2008) that the varying dispersion parameter can better capture the structured 
359 variations observed in the dataset. The traditional NB models showed better performance when formulated by the 
360 AADT and length dependent dispersion functions (e.g., dispersion functions (1) and (2)); however, the NB-L models 
361 favored the length-only dependent dispersion functions more. Having excluded models with insignifcant coeÿcients, 
362 dispersion function (1), dependent upon both length and AADT, and dispersion function (3), dependent on length only, 
363 provided better statistical ft in the traditional NB models and the NB-L models, respectively. According to the results, 
364 the following conclusions could be obtained. First, the functional form of the dispersion parameter can signifcantly 
365 a˙ect the model performance. This has been documented in the literature that applying di˙erent dispersion functions 
366 to the same model lead to di˙erent model performances (Geedipally et al., 2009; Cafso et al., 2010). However, the 
367 improvements in the traditional NB models were more signifcant than the NB-L models. It was expected since the 
368 NB-L models are typically characterized by smaller over-dispersion parameter and hence, are less sensitive to the 
369 choice of the dispersion structure. Second, each NB parameterization calls for its own appropriate dispersion function. 
370 This means that if, for instance, a NB-2 model is enhanced by using a specifc dispersion function, a NB-L model 
371 is not essentially improved by using the same dispersion function. This study also found that, within the traditional 
372 NB models, NB-1 shows more sensitivity to the dispersion function choice compared to the NB-2 and NB-P. This is 
373 probably due to the less fexible variance structure of the NB-1 compared to the other two models. So, providing it with 
374 an appropriate dispersion function could highly a˙ect its ability to account for the data heterogeneity. These results 
375 support Wang et al. (2019) fndings that more fexible variance structures in the NB models (e.g. NB2 and NB-P) can 
376 even capture the variation in the dispersion parameter. Therefore, these models are less sensitive to the dispersion 
377 structure. So, it can be concluded that researchers should choose the dispersion structure for each dataset (Geedipally 
378 et al., 2009), as well as for each parameterization of the crash-frequency model. 
379 This study used a combination of metrics to evaluate and compare the models. Median absolute deviation (MAD) 
380 computes the average absolute di˙erence between the observed and predicted values. Mean absolute scaled error 
381 (MASE) is a scale-free metric that normalizes the MAD by the average error. However, all these metrics are the mea-
382 sures of accuracy of the prediction. To consider the prediction accuracy and complexity of the model simultaneously, 
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383 a cross-validation and an information criteria based method were used. These methods estimate the out of sample 
384 accuracy using within sample fts (Vehtari et al., 2017). Leave-one-out cross-validation assesses the predictive accu-
385 racy of the model by estimating the prediction error for the sample i without using it to train the model. However, 
386 it requires re-ftting the model N times (N is the sample size) to calculate the predictive accuracy. In the method 
387 proposed by Vehtari et al. (2017), they approximated the underlying process by using the sample draws from the full 
388 posterior distribution, p(�|y), which is the typical outcome of any Bayesian analysis. Consequently, the leave-on-out 
389 cross-validation could be approximated by ftting the model once. 
390 Also, WAIC appeared to be a more robust metric compared to the Deviance Information Criteria (DIC) in the 
391 Bayesian framework (Watanabe and Opper, 2010). As Geedipally et al. (2014) mentioned, regardless of the similarity 
392 of the estimates among the NB models, di˙erent parameterization of the model, especially di˙erent defnitions of the 
393 likelihood functions in the hierarchical models, lead to di˙erent DIC values. Therefore, considering a fully Bayesian 
394 alternative metric seems essential, especially when both likelihood function and dispersion structure vary across the 
395 models. WAIC makes use of the entire posterior distribution and also is invariant to re-parameterization of the model 
396 (Vehtari et al., 2017). In general, all the information criteria approaches interpret the e˙ective number of parameters 
397 as a measure of the model complexity. Although both DIC and WAIC use a variance-based computation to estimate 
398 the e˙ective number of parameters (Gelman et al., 2014), WAIC produces more reliable results as it calculates the 
399 variance for each point separately (Vehtari et al., 2017). Both LOO and WAIC showed superiority over the traditional 
400 metrics such as AIC and DIC; however, they are computationally intensive and costly. In this study, we extracted N ×S 

401 log-likelihood matrix, (where S is the number of simulation, and N is the number of observations) and then used the 
402 R package, called "loo" and set up by Vehtari et al. (2018), to compute LOO and WAIC. 
403 Finally, after excluding models with insignifcant estimates, the NB1-L and NB2-L models with length-only de-
404 pendent dispersion function outranked the others in terms of almost all the metrics. However, within the NB-L models, 
405 there was some discrepancy. NB2-L showed better performance in terms of WAIC, and MASE, whereas NB1-L out-
406 performed the others in terms of LOO and MAD. These fndings justify the use of di˙erent metrics for evaluation and 
407 comparison purposes. 

408 6. Summary and Conclusion 

409 NFAS roads comprise a signifcant part of the roadway network; however, not much research e˙orts have gone 
410 toward accurately evaluating the safety of these roadways. As these roadways are characterized by di˙erent features 
411 as major facilities (e.g., highways, arterials, etc.), there is a need to improve the currently used models to accurately 
412 quantify the safety issues associated with them. The primary objective of this study was to evaluate the application 
413 of di˙erent parameterizations of the negative binomial models in the SPF development of NFAS roadways. In the 
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414 frst level, both traditional NB and zero-favored NB (i.e., NB-L model) were considered to model the crash counts. 
415 Then, for each model, three di˙erent variance structures were considered, leading to six di˙erent NB parameteriza-
416 tions. Finally, for each of the six crash-frequency models, fve di˙erent dispersion structures were employed. Using 
417 crash data, roadway inventory, and traÿc volume data from 2014-2018 in Virginia, this study showed that the NB-L 
418 models ft better than the traditional NB models. Within the NB-L models also the NB1-L and NB2-L models showed 
419 better fts. This study also found that the variance and dispersion structure choices are highly dependent upon the 
420 NB parameterization. As opposed to the traditional NB models, the NB-L models performed better when using the 
421 length-only dependent dispersion function. All the models were evaluated using various GOF measures, including two 
422 recently documented fully Bayesian metrics, WAIC and LOO. This study provides additional insight into the choice of 
423 the predictive model to evaluate the safety performance of NFAS roadways. The advanced models developed in this 
424 study could contribute to the betterment of safety evaluation of these roadways and any other crash dataset that requires 
425 a more fexible modeling structure. This study showed that a reasonably chosen variance and dispersion structure can 
426 e˙ectively enhance the count models (even the more advanced models which have been proven that outperform the 
427 traditional models) leading to better model performances, more accurate estimates, and hence more reliable decision 
428 making. Using a more detailed dataset and the inclusion of other traÿc-related variables could further enhance the 
429 model performance. This study did not separate di˙erent categories of NFAS roadways. Further work needs to be done 
430 to develop SPF for each functional class individually. Also, separating the crash data by severity level (e.g., KABCO, 
431 KAB, etc.) and crash type would further improve the predictive accuracy of the model. 
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	66 
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	67 
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	Das et al. 
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	69 
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	70 
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	studies utilized traditional count models to develop SPFs for low-volume roadways and did not examine more advanced 
	77 
	and innovative models that are capable of accounting for unique characteristics of crash data, such as having a large 
	78 
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	of the Poisson distribution and has been considered the most popular model in highway safety (Lord and Mannering, 
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	2010; 
	2010; 
	Lord et al., 
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	87 
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	(Geedipally et al., 
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	116 
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	120 
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	2008). 
	Ismail and Zamani 
	(2013) 

	121 assessed the application of di˙erent variance structure of di˙erent count models, such as the Poisson and NB 
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	123 NB parameterizations. Also, 
	Wang et al. 
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	124 hence is preferable over the NB-1 and NB-2 when developing SPFs for rural intersections. They concluded that 
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	126 
	127 
	• Mixture distribution: although the NB regression model accounts for the built-in dispersion in crash data, crash 
	128 datasets are naturally characterized by unique features such as having a large number of zeros or a heavy tail, 
	129 which the traditional NB models cannot eÿciently deal with. To overcome this problem, 
	Lord and Geedipally 

	130 
	(2011) and 
	Geedipally et al. 
	(2012) examined the application of the NB and Lindley mixture distribution (NB
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	131 
	L) introduced by . They found that the NB-L model, while 
	Zamani and Ismail 
	(2010), in crash data analysis 
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	132 preserving the NB characteristics, provides a better ft compared to the traditional NB models for the datasets 
	The NB-L has been proposed as an alternative to the application of zero-infated (ZI) models for handling datasets with a large percentageof zero responses. The NB-L model o˙ers a single mean function that is never equal zero, which is not the case for the ZI model. This and othersubstance abuse, criminology and social sciences. Additional discussion can be found in Chapter 3 of 
	1
	limitations have not only been documented in highway safety (Lord et al., 
	2005, 
	2007), but in various other felds, such as environmental science,
	Lord et al. 
	(2021) 

	su˙ering from a large proportion of zeros or high dispersion problems. 
	135 
	All the above-mentioned regression models could be estimated in either frequentist or Bayesian framework. The 
	136 
	superiority of the Bayesian paradigm has been documented in the literature from di˙erent points of view. First of all, 
	137 
	when limited data is available, the full Bayesian (FB) method can yield unbiased estimates by incorporating common 
	138 
	Beliefs (prior distribution) about the variable of interest into the analysis (Heydari et al., 
	Beliefs (prior distribution) about the variable of interest into the analysis (Heydari et al., 
	2014; 
	Lord and Miranda
	-


	139 
	Moreno, 
	Moreno, 
	2008). Also, despite frequentist analysis, which requires a considerable number of repeated random trials to 

	140 
	build the confdence intervals, Bayesian methods represent the hypothesis uncertainty in a natural probabilistic way 
	141 
	and attach it to the modeling procedure. Moreover, as the hierarchy level grows and the data structure gets more 
	142 
	complex, the frequentist method needs more computational e˙ort to fnd a closed-form of the distribution or employ a 
	143 
	simulation-based solution; however, Bayesian methods can take advantage of both, Bayes theorem and its hierarchical 
	144 
	nature to easily draw samples from the posterior distribution of the parameter of interest using the Markov Chain Monte 
	145 
	Full Bayesian paradigm has been extensively 
	Carlo (MCMC) simulation (Heydari et al., 
	2014; 
	Lord et al., 
	2021). 

	146 
	used in various settings including the hierarchical Poisson model (Pawlovich et al., 
	used in various settings including the hierarchical Poisson model (Pawlovich et al., 
	Heydari et al., 
	2006), NB model (


	147 
	, 
	2014; 
	Farid et al., 
	2017), Poisson log-normal model (
	Aguero-Valverde and Jovanis
	2009), and NB-L model (
	Lord and 

	148 
	Geedipally, 
	Geedipally, 
	2011; 
	Geedipally et al., 
	2012) for various crash analysis such as crash frequency prediction, site ranking, 

	149 
	and SPF development. 
	150 
	1.1. Study Objective 
	1.1. Study Objective 
	151 
	The main objective of this study is to apply di˙erent forms of count models to develop SPFs for NFAS roads. Given 
	152 
	the share of NFAS roads from the total roadway mileage, accurately quantifying the safety issues of these roadways 
	153 
	can considerably contribute to more robust safety analysis and e˙ective decision making. The next section describes 
	154 
	the formulation and hierarchical representation of the NB models that were examined in this study. 
	155 


	2. Methodology 
	2. Methodology 
	156 
	The most common methods that are used by researchers to develop SPFs are the Poisson and Poisson-gamma 
	157 
	The Poisson-gamma mixture or NB distribution is the generalization of the 
	regression models (Lord et al., 
	2005). 

	158 
	Poisson distribution, which eases the assumption that the mean and variance are equal by introducing the dispersion 
	159 
	parameter to the model. As mentioned in the previous section, both the variance structure and the dispersion parameter 
	160 
	161 
	the various NB formulations derived from di˙erent variance structures. Then, the NB-L model is presented, which 
	introduces more fexibility to the traditional NB model. The last subsection presents di˙erent functional forms of the 
	dispersion structure to better capture the variation in dispersion parameter across the road segments. 
	2.1. NB-2 
	2.1. NB-2 
	165 
	The NB-2 is the most common form of the NB models. The hierarchical representation of the NB-2 is described 
	166 
	as follows (Heydari et al., 
	as follows (Heydari et al., 
	2014): 
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	response crash frequency which is an exponential function of roadway characteristics. As seen, the NB model allows 
	169 
	for inter-observation heterogeneity by multiplying a gamma distributed error term, r, to the mean function. After 
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	As described in Eq.(4), the NB-2 model assumes that there is a quadratic association between the mean and the variance 
	As described in Eq.(4), the NB-2 model assumes that there is a quadratic association between the mean and the variance 

	173 
	through the inverse dispersion parameter. 
	174 
	2.2. NB-1 
	175 
	The other commonly used formulation of the NB model is shown in Eq.(5). The NB-1 model assumes that there 
	The other commonly used formulation of the NB model is shown in Eq.(5). The NB-1 model assumes that there 

	176 
	is a constant ratio linking the mean and the variance of the crash frequencies. This could be achieved by replacing the 
	177 
	inverse dispersion parameter, ., with ..
	i 
	in Eq.(4). The NB-2 model assumes that there is only one fxed dispersion 

	178 
	parameter in the entire dataset, while the NB-1 adjusts the dispersion parameter for each site, individually. This adjust
	-

	179 
	ment leads to a di˙erent parameterization of the NB model which also preserves the conditional mean. The probability 
	180 
	density function, mean, and variance of the NB-1 model can be written as follows (Greene, 
	density function, mean, and variance of the NB-1 model can be written as follows (Greene, 
	2008): 
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	2.3. NB-P 
	2.3. NB-P 
	182 A more general type of the NB model is the NB-P model, which does not constrain the mean-variance relationship. 
	183 ., in the mean-variance relationship can take any value. Similar to the 
	As seen in Eq.(10), the exponent of the mean, 
	i

	184 NB-1 model, this formulation also makes an adjustment to the dispersion parameter of each site while maintaining 
	185 the conditional mean. The probability density function, mean and variance of the NB-P distribution can be derived as 
	186 
	follows (Greene, 
	2008): 

	2−p 2−p
	Ł(..+ yi) ..i 2−p .iP (Y ð., .)= ( i ()i (8)
	i 
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	..
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	2−p 
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	ii
	V ar(y)= .+ = .+ (10)
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	2.4. NB-L 
	2.4. NB-L 
	188 
	To deal with the unique and problematic characteristics of crash data such as excess zeros and having a long heavy 
	189 
	tail, extensions of the NB model have been proposed, which o˙er a more fexible structure to the original model in 
	190 
	order to deal with problematic datasets. In this regard, 
	Zamani and Ismail 
	(2010) proposed the use of the mixture 

	191 
	of NB and Lindley distribution to analyze a highly dispersed dataset characterized by a large number of zeros and a 
	192 
	heavy tail. This model, also referred to as a multi-parameter model (Lord and Geedipally, 
	heavy tail. This model, also referred to as a multi-parameter model (Lord and Geedipally, 
	2018), under a hierarchical 

	193 
	Bayesian framework can be described as follows (Geedipally et al., 
	Bayesian framework can be described as follows (Geedipally et al., 
	2012): 

	P (Y = y, ., .ð.)= NB(y; ., ..) (11) . í Lindley(.) 
	i
	i

	194 
	Where, . is the Lindley distribution parameter. The Lindley distribution is a mixture of the exponential and gamma 
	195 
	distribution (Zamani and Ismail, 
	distribution (Zamani and Ismail, 
	2010). The probability density function and the mean structure of the Lindley distri
	-


	196 
	bution can be written as follows: P (E = .ð.)í (1+ .)e; .> 0 (12)
	.
	2 
	−.x

	. +1 
	. +1 
	. +1 

	. +2 

	E(.)= (13)
	.(. + 1) 
	.(. + 1) 

	197 
	The NB-L formulation then could be derived by integrating the Lindley prior out of the NB and Lindley joint distri
	-

	198 
	bution: P (Y = y, ., ., .)= NB(y; ., ..)Lindley(., .) d. (14) 
	Ê 

	199 
	The conditional mean and variance of the NB-L distribution then can be given as: 
	. +2 
	E(y)= .E(.)= .(15)
	i
	i
	i 

	. +2 1+ .. +2 
	.(. + 1) 
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	V ar(y)= .+ .( )( )−(.)(16)
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	200 
	As seen in Eq.(16), despite the NB-1, NB-2, and NB-P models (from now on referred to as traditional NB models), in 
	As seen in Eq.(16), despite the NB-1, NB-2, and NB-P models (from now on referred to as traditional NB models), in 

	201 
	which the variation is only explained by the dispersion parameter, part of the variability in the NB-L model is captured 
	202 
	by the mixed Lindley distribution. This could o˙er even more fexibility to the model to capture further variations in the 
	203 
	dataset. Similar to the traditional NB models, the NB-L can also be formulated with di˙erent variance structures. The 
	204 
	NB1-L, NB2-L, and NBP-L are the counterparts of the traditional NB models, which take advantage of two sources 
	205 
	of variation, the dispersion parameter, and the mixed Lindley distribution. Similar to the NB-P, the NBP-L is the most 206 general formulation of the NB-L models. Given k= .., the hierarchical representation of the NBP-L model could 
	i 
	2−p

	i 
	207 
	be formulated as follows: 
	P (Y = y, ., kð.)= NB(y; k, ..) (17) . í Lindley(.) 
	i
	i
	i
	i

	208 

	2.5. Dispersion parameter functional form 
	2.5. Dispersion parameter functional form 
	209 
	So far, six NB models with di˙erent parameterizations and di˙erent variance structures have been discussed. Each 
	210 
	functional form of the NB could be formulated with a fxed or varying dispersion parameter. In this study, four di˙er
	-

	211 
	ent parameterizations of the inverse dispersion parameter (.) were evaluated. These functional forms were selected 
	212 
	according to the best formulations proposed by 
	Geedipally et al. 
	(2009). In addition, 
	Cafso et al. 
	(2010) mentioned 

	213 
	that in shorter segments, variability of the dispersion parameter matters more. Also NFAS roads are basically charac
	-

	214 
	215 
	forms selected from the ones proposed by 
	Geedipally et al. 
	(2009). For all the six models, a fxed, and the following 

	functional forms of the inverse dispersion parameter, ., were modeled and examined: 
	..
	1 
	2

	. = e< AADT < L (18)
	.
	0

	ii .
	1

	. = e< AADT < L(19)
	.
	0
	i 

	i .
	2

	. = e< L (20)
	.
	0

	i . = e< L(21) 
	.
	0
	i 

	217 Where, the .’s are the parameters needed to be estimated and L is the segment length. 
	218 It should be pointed out that the varying dispersion function may not be needed as the number of parameters used 
	219 with the mean function increases. 
	Mitra and Washington 
	(2007) indicated that as the mean function gets better defned, 

	220 the dispersion function becomes less structured or may even become fxed for well-defned mean functions. However, 
	221 recent research on this topic by 
	Zou et al. 
	(2014) indicates that the varying dispersion function may be data dependent 

	222 rather than dependent on the mean function. Even with a well-defned mean function, the variance was still structured 
	223 and dependent on the covariates included in the model according to the dataset used in their study. 
	224 

	2.6. Parameter estimation 
	2.6. Parameter estimation 
	225 To generate valid posterior inferences, a full Bayesian approach was utilized. The FB method can incorporate all 
	226 the information and prior knowledge into a single hierarchical model and yield robust estimates even when limited data 
	227 is available. Since the Lindley distribution is not a standard distribution to draw samples from, a simpler formulation 
	228 of the NB-L was used. According to this formulation, the Lindley distribution could be parameterized as a sum of two 
	229 gamma distributions with the mixture components following the Bernoulli distribution. The equivalent hierarchical 
	230 
	representation of the Lindley distribution can be shown as follows (Zamani and Ismail, 
	2010): 

	. í Gamma(1 + z, .) (22) 1 
	z í Bernoulli()
	1+ . 
	1+ . 

	231 
	Moreover, the FB method requires to specify the prior distribution on all the unknown hyper-parameters to combine 
	232 the data likelihood with the past evidence. This study assumed a non-informative normal prior for the regression 
	233 coeÿcients of the mean and the varying dispersion function, and a gamma prior on the fxed dispersion parameter, 
	234 1_.. Furthermore, priors should be chosen to preserve the identifability of the model. In the NB-L model, as seen in 
	235 ), both conditional mean and variance are adjusted by the Lindley parameter, .. As a result, expectation 
	Eqs.(15) and (
	16

	236 of . should be equal to one to preserve the conditional mean and ensure the identifability issue. As suggested in 
	( ) would be a good prior distribution on (1_1 + .) since it 
	Shaon et al. 
	(2018) and 
	Geedipally et al. 
	(2012), a Beta 
	N 

	guarantees E(.)=1, and is also relevant to the likelihood function through the parameter N (number of observations). 
	Having specifed the hierarchical joint model, we can draw random samples from the posterior distribution of the 
	240 
	unknown parameters using the MCMC method. Depending on the availability of the full conditional distribution of the 
	241 
	unknown parameter given the other parameters, Gibbs sampling method or otherwise, Metropolis-Hasting algorithm 
	242 
	can be used to draw random samples from the posterior distribution. In this study, an open-source R package, called 
	243 
	"rjags", was used to conduct MCMC analysis (Plummer et al., 
	"rjags", was used to conduct MCMC analysis (Plummer et al., 
	2016). All the proposed models were implemented in 

	244 
	the Bayesian framework. A total of three Markov chains, each containing 50,000 iterations, were run to make sure the 
	245 
	convergence is achieved. The frst 10,000 samples of each chain were considered as burn-in samples, and the remaining 
	246 
	samples were used to estimate the unknown coeÿcients. Also, to mitigate the possible sample auto-correlation, out of 
	247 
	three successive samples, only one sample was stored for estimation. 
	248 
	3. Data description 
	249 
	Virginia roadway information, traÿc volume, and crash data from the Virginia Department of Transportation 
	250 
	(VDOT) were gathered, processed, and integrated in order to develop SPFs for NFAS roads. Roadway inventory 
	251 
	attributes such as lane width, shoulder width, number of lanes, etc., were, unfortunately, missing for a considerable 
	252 
	number of segments. It is important to note that the data used in this study are collected from NFAS roadways which 
	253 
	are mostly known as local roadways with low volume (2000 vpd or lower). Low-volume roadway inventory data are 
	254 
	not usually well maintained and there are many missing geometric data such as horizontal and vertical curvature, 
	255 
	shoulder width, etc. The other possible covariates available in the dataset were the percentage of trucks, and the per
	-

	256 
	centage of buses in the roadways, which turned to be insignifcant in all the regression models. The only reliable and 
	257 
	available variables were segment length and AADT, which match with the basic variables used by the HSM. So, this 
	258 
	study used fow-only models to make SPFs similar to the ones found in the HSM. Out of 92,834 reported crashes 
	259 
	and 117,863 roadway information collected from 2014 to 2018 (latest dataset available), 3,708 NFAS roadways, and 
	260 
	corresponding 14,212 crashes were identifed. Finally, after excluding the missing records, outliers, roadways with 
	261 
	low-quality AADT counts (count estimates labeled as poor quality by the VDOT), and intersection related crashes, the 
	262 
	fnal database, including a fve-year period information on 2,598 segments and 5,856 crashes was obtained. Nearly 
	263 
	37% of the roadways did not experience any crash during the fve years. Table present the summary statistics of the 
	1 

	264 
	input data that was used to develop SPFs. Descriptive statistics are summarized for both categorized data (based on 
	265 
	Table 1 
	Summary Statistics of Virginia Data 
	Roadway Functional Class Variable Min Max Average (Std.dev) Skewness 
	Number of Crashes 0 33 2.25 (3.22) 2.83 All NFAS roads AADT over 5 years (vpd) 8 2347 589 (434.6) (N = 2598) Segment Length (miles) 0.1 5.73 1.374 (1.20) 
	Number of Crashes 0 33 2.75 (3.55) 2.59 Rural Minor Collector AADT over 5 years (vpd) 21 2346 584.04 (395.9) (N = 1778) Segment Length (miles) 0.1 5.73 1.59 (1.20) 
	Number of Crashes 0 17 ) 2.85 Rural Local AADT over 5 years (vpd) 8 2093 379.22 (333.87) (N = 455) Segment Length (miles) 0.1 5.7 1.28 (1.18) 
	1.32(2.16

	Number of Crashes 0 14 0.98 (1.76) 3.31 Urban Local AADT over 5 years (vpd) 9 2347 874.8 (553.4) (N = 365) Segment Length (miles) 0.1 4.52 0.4 (0.48) 
	266 


	4. Modeling results 
	4. Modeling results 
	267 
	This section describes the details of the SPF modeling results. In total, six count models, including the NB-1, NB
	-

	268 
	2, NB-P, NB1-L, NB2-L, and NBP-L, each with fve di˙erent dispersion structures, were developed and run. Segment 
	269 
	length and AADT were included in the SPF models as the possible covariates. Segment length was considered as 
	270 
	a separate covariate rather than an o˙set since its estimate was statistically di˙erent from one. It should be pointed 
	271 
	out that, even though this study only used segment length and AADT, the omitted-variable bias is not critical in this 
	272 
	study since the models were compared using the same dataset and functional form (i.e., the link between the dependent 
	273 
	and independent variables). Also, to make the MCMC process faster and overcome the poor convergence resulting 
	274 
	from the multicollinearity issue (Shaon et al., 
	from the multicollinearity issue (Shaon et al., 
	2018), the standardized covariates were input for estimation and then 

	275 
	transformed back to the original scale. 
	276 
	Tables to summarize the estimation results for each NB model with fxed, AADT and length dependent, and 
	2 
	4 

	277 
	length-only dependent dispersion structure, respectively. The frst and second part of each table provides estimates for 
	278 
	the mean function coeÿcients, ’s, and the dispersion function coeÿcients, .’s, respectively. For the models associated 
	279 
	with a fxed dispersion structure, the inverse dispersion parameter is also reported only for those models that follow 
	280 
	the original NB distribution structure without any adjustment to the dispersion structure (i.e., NB2 and NB2-L). The 
	281 
	last part demonstrates the performance evaluation metrics for evaluation and comparison purposes. 
	282 
	This study used the Bayesian counterpart of the confdence interval, credible interval, to test the signifcance of the 
	283 
	parameters. The coeÿcients, which their highest posterior density credible interval (HPD credible interval) included 
	284 
	zero at 5% level, were underlined in Tables to 
	2 
	4. 

	285 
	286 
	the crash frequency, which confrms the previous fndings regarding SPFs for low-volume roadways (Das et al., 
	the crash frequency, which confrms the previous fndings regarding SPFs for low-volume roadways (Das et al., 
	2019; 

	Cook, 
	Cook, 
	2010; 
	Stamatiadis et al., 
	1999; 
	Dell’Acqua and Russo, 
	2011; 
	Zegeer et al., 
	1994). As opposed to the coeÿ-

	Table 2 
	Variable 
	Variable 
	Variable 
	NB-1 
	NB-2 
	NB-P 
	NB1-L 
	NB2-L 
	NBP-L 

	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . . P WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . . P WAIC LOO MAD MASE Log-likelihood 
	-4.07 (0.18) 0.63 (0.03) 0.56 (0.01) ---8296 8296 1.25 0.55 -4096 
	-4.41 (0.20) 0.65 (0.03) 0.65 (0.01) 3.12 (0.25) --8232 8232 1.25 0.56 -4064 
	-4.41 (0.20) 0.65 (0.03) 0.65 (0.02) --1.94 (0.11) 8234 8234 1.26 0.56 -4064 
	-4.46 (0.26) 0.64 (0.09) 0.68 (0.02) -1.41 (0.06) -7612 8112 1.15 0.57 -3290 
	-4.47 (0.26) 0.65 (0.09) 0.68 (0.02) 17.54 (3.10) 1.41 (0.06) -7640 8174 1.16 0.57 -3312 
	-4.46 (0.26) 0.64 (0.09) 0.68 (0.02) -1.41 (0.06) 0.57 (0.38) 7619 8132 1.16 0.56 -3287 


	NB2-L NBP-L 
	¨ 
	288 
	cients of the mean function, s, some coeÿcients of the dispersion function, . s, were neither signifcant nor similar 
	¨ 

	289 
	across the modeling approaches. As illustrated in Table 
	3, the estimates for the intercept and AADT coeÿcient of the 

	290 
	with AADT and length dependent dispersion structure. On the other hand, as shown in Tables to 
	2 
	4, the magnitude 

	Table 3 
	Model Estimation Results (AADT and length dependent dispersion structure) Variable 
	NB-1 NB-2 NB-P 
	NB-1 NB-2 NB-P 
	NB1-L 

	.1 .2
	Functional Form (1): .= e0 AADTL
	i 
	.
	i 
	i

	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	-4.51 (0.19) 0.72 (0.04) 0.51 (0.01) --4.19 (0.71) -0.67 (0.10) 0.41 (0.12) 8150 8150 1.29 0.55 -4070 
	-4.51 (0.20) 0.70 (0.04) 0.55 (0.02) --0.20 (0.68) 0.07 (0.10) 0.85 (0.10) 8089 8089 1.28 0.55 -4040 
	-4.56 (0.20) 0.70 (0.03) 0.60 (0.02) -3.48 (0.20) -4.93 (0.96) 1.08 (0.17) 1.92 (0.17) 8043 8043 1.35 0.56 -4017 
	-4.41 (0.27) 0.64 (0.09) 0.66 (0.02) 1.39 (0.05) -6.33 (4.57) -0.02 (0.67) 3.65 (1.02) 7485 7978 1.15 0.56 -3284 
	-4.39 (0.27) 0.65 (0.09) 0.63 (0.02) 1.38 (0.05) -2.72 (3.07) 0.40 (0.45) 3.60 (0.64) 7497 8018 1.16 0.55 -3310 
	-4.50 (0.32) 0.69 (0.09) 0.58 (0.02) 1.39 (0.06) 3.91 (0.09) -2.61 (2.31) 1.22 (0.33) 3.65 (0.4) 7564 7981 1.29 0.55 -3373 


	Functional Form (2): .= e0 AADT
	i 
	.

	ii
	.
	1 
	L

	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	-4.54 (0.18) 0.74 (0.03) 0.47 (0.01) --3.87 (0.73) -0.62 (0.10) -8170 8170 1.38 0.57 -4081 
	-4.52 (0.19) 0.71 (0.03) 0.54 (0.01) ---0.05 (0.64) 0.11 (0.09) -8087 8087 1.30 0.55 -4041 
	-4.52 (0.20) 0.69 (0.03) 0.60 (0.02) -2.56 (0.10) -1.21 (0.66) 0.38 (0.10) -8066 8067 1.30 0.56 -4030 
	-4.48 (0.26) 0.65 (0.09) 0.68 (0.02) 1.39 (0.05) -6.48 (11.24) -0.08 (1.75) -7482 7981 1.15 0.57 -3274 
	-4.51 (0.27) 0.65 (0.09) 0.68 (0.02) 1.41 (0.06) -8.36 (12.67) -0.29 (1.97) -7489 8030 1.16 0.57 -3281 
	-4.56 (0.28) 0.65 (0.09) 0.77 (0.03) 1.42 (0.07) 3.93 (0.06) -5.34 (2.06) 1.77 (0.33) -7672 8055 1.24 0.64 -3385 


	Table 4 
	Model Estimation Results (length-only dependent dispersion structure) Variable 
	NB-1 NB-2 NB-P 
	NB-1 NB-2 NB-P 
	NB1-L 

	.2 
	.0
	Functional Form (3): .= Le 
	i 
	i 

	NB2-L NBP-L 
	292 
	of the coeÿcients of the dispersion function vary markedly across the models. The di˙erences in signifcance and 
	293 
	magnitude of .’s could be partially attributed to the di˙erent variance structures in the models. The NB-1, NB-2, and 
	294 
	NB-P models, each has a specifc structure to capture the variation. Introducing the Lindley distribution to the NB 
	295 
	models makes the variance structure even more complex since it provides the model with additional complexity and 
	296 
	hence, more fexibility. Therefore, the source of variation in each model is di˙erent, which makes it diÿcult to compare 
	297 
	the dispersion coeÿcients, individually. Moreover, as seen in Table and Table 
	3 
	4, the sign of the length coeÿcient 

	298 
	is positive in the dispersion functions, indicating that the dispersion parameter, 1_., and therefore, the unobserved 
	299 
	variation decreases as roadway length increases. These fndings are in line with 
	Hauer 
	(2001) and 
	Cafso et al. 
	(2010), 

	300 
	indicating that shorter segments have higher crash frequency variances. 
	301 
	Models were evaluated based on a combination of di˙erent goodness of ft measures. Two fully Bayesian metrics, 
	302 
	303 
	304 
	over the traditional NB models is demonstrated through all the GOF metrics. 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	-4.09 (0.18) 0.65 (0.04) 0.51 (0.01) ---0.20 (0.07) -0.50 (0.12) 8188 8188 1.24 0.55 -4090 
	-4.54 (0.20) 0.71 (0.04) 0.55 (0.01) --0.70 (0.07) -0.83 (0.10) 8087 8087 1.29 0.55 -4040 
	-4.52 (0.21) 0.70 (0.04) 0.57 (0.02) -2.41 (0.14) 1.15 (0.17) -0.99 (0.11) 8081 8081 1.29 0.55 -4037 
	-4.39 (0.26) 0.64 (0.09) 0.65 (0.02) 1.39 (0.05) -6.11 (1.34) -3.75 (0.90) 7482 7971 1.15 0.56 -3285 
	-4.47 (0.27) 0.66 (0.09) 0.63 (0.02) 1.39 (0.05) -5.24 (1.06) -3.51 (0.62) 7497 8015 1.18 0.55 -3313 
	-4.72 (0.30) 0.72 (0.09) 0.60 (0.02) 1.39 (0.05) 0.13 (0.12) 6.22 (0.63) -3.80 (0.17) 7535 7963 1.27 0.55 -3345 


	.0
	Functional Form (4): .= Le 
	i 
	i

	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	Intercept ( 0)Ln(AADT) ( 1)Length ( 2) . P .0 .1 .2WAIC LOO MAD MASE Log-likelihood 
	-4.14 (0.17) 0.68 (0.03) 0.48 (0.01) ---0.21 (0.08) --8201 8201 1.32 0.57 -4097 
	-4.55 (0.20) 0.72 (0.03) 0.53 (0.01) --0.69 (0,06) --8087 8087 1.30 0.55 -4041 
	-4.52 (0.21) 0.70 (0.03) 0.57 (0.02) -2.41 (0.12) 1.14 (0.16) --8079 8079 1.30 0.55 -4036 
	-4.48 (0.26) 0.64 (0.09) 0.68 (0.02) 1.38 (0.05) -5.37 (1.48) --7482 7981 1.13 0.56 -3275 
	-4.45 (0.26) 0.64 (0.08) 0.68 (0.02) 1.39 (0.06) -5.88 (1.43) --7481 8024 1.15 0.57 -3277 
	-4.74 (0.31) 0.68 (0.09) 0.72 (0.03) 1.39 (0.06) 3.44 (0.97) 6.12 (0.81) --7625 8075 1.22 0.60 -3348 


	Among the traditional NB models, models with the less restricted mean-variance structure, i.e. NB-2 and NB-P 
	showed better performance. However, the NB-L models performed better when formulated with less fexible mean
	-

	variance relationships, i.e. NB1-L and NB2-L. 
	308 
	All the NB parameterizations with varying dispersion parameters, regardless of the dispersion structure, showed 
	309 
	superior ft compared to the NB parameterizations with fxed dispersion parameters. Moreover, as indicated in Tables 
	2 

	310 
	to 
	4, the performance measures vary when employing di˙erent dispersion functions. Given the results, it could be 

	311 
	interpreted that the NB-L models perform better if the length-only dependent dispersion functions are used, whereas 
	312 
	the traditional NB models favor the AADT and length dependent dispersion structures more. 
	313 
	Based on the combination of GOF criteria and also the signifcance of the model coeÿcients, NB1-L and NB2
	-

	314 
	L with length-only dispersion structure (dispersion structure (3) and (4)) ranked as the best models. As 
	Hauer and 

	315 
	Bamfo 
	Bamfo 
	(1997) suggested, the cumulative residual (CURE) plot was utilized to assess the model performance by di
	-


	316 
	rectly analyzing the residuals. The CURE plot of a well-ftted SPF should not include an upward or downward trend or 
	317 
	a noticeable periodicity. It should fuctuate around zero while being in the boundary of two standard deviations (conf
	-

	318 
	dence interval). Adjusted CURE plot for the NB1-L model, as well as other models with the same dispersion function, 
	319 
	are depicted in Figure All the CURE plots are adjusted to end at zero to make them comparable. In comparison to 
	1. 

	320 
	the traditional NB models, there are less sudden falls and rises in plots of the NB-L models. Also, the CURE plots 
	321 
	of the NB-L models seem to be within the confdence intervals more often than their traditional counterparts. Aside 
	322 
	from the CURE plots, the unadjusted cumulative residual itself could be a valid indicator of the predictive ability of 
	323 
	the model. The last values of the cumulative residuals (sum of all the residuals) are equal to -235, -298, -339, -3, -26, 
	324 
	-206 for the NB-1, NB-2, NB-P, NB1-L, NB2-L, and NBP-L, respectively. To put it di˙erently, cumulative residual 
	325 
	plot of the NB1-L and NB2-L models converges to zero naturally; whereas, that of the other NB parameterizations are 
	326 
	far away from zero. These fndings are also in line with 
	Shirazi et al. 
	(2017) fndings that the maximum deviation of 

	327 
	the NB-L models are smaller than the NB models. 
	328 

	5. Discussion 
	5. Discussion 
	329 
	This study aimed to develop SPFs for NFAS roads. As these roads commonly have low volumes and short lengths, 
	330 
	their crash statistics could be characterized by specifc features that make it challenging to accurately quantify their 
	331 
	safety performances. As there are not many studies done on these particular roadway classes, there is no commonly 
	332 
	agreed predictive model that performs adequately. This study compared the application of di˙erent count models in 
	333 
	334 
	between di˙erent forms of the mean-variance association through the dispersion parameter, and (3) between di˙erent 
	functional forms of the dispersion parameter. 
	Figure
	Figure 1: CURE plots for AADT variable (Dotted lines represent ±1.96 std.dev) 
	336 
	As the results showed, regardless of the dispersion structure, all the GOF measures indicated that the NB-L models 
	337 
	provide a better statistical ft. In the dataset analyzed in this study, 37% and 20% of the roadways had recorded zero 
	338 
	and one crashes for a fve year period, respectively. Also, dividing the crash counts by the number of years that data 
	339 
	was collected, we observed that around 78% of the segments have crash frequencies below 0.6 crash per year. This 
	340 
	information confrms 
	Geedipally et al. 
	(2012) fndings that the NB-L models o˙er superior performance for datasets 

	341 
	characterized by a large number of zeros. Also, the results are in line with 
	Shirazi et al. 
	(2017), which showed that for 

	342 
	crash data with skewness higher than 1.92 (2.83 in this study) the NB-L model performs better. 
	343 
	For both groups of traditional NB and NB-L models, di˙erent mean-variance structures were examined as well. 
	344 
	Similar to the results of 
	Wang et al. 
	(2019), the NB-P and NB-2 favored the NB-1 model, regardless of the dispersion 

	345 
	structure. It was not unexpected since the NB-1 model introduces a less fexible variance structure (linear mean
	-

	346 
	variance relationship) to the model. The NB-P model performed slightly better than NB-2 due to the more fexibility 
	347 
	through the parameter P . However, the improvements were negligible since the estimated P parameter in the NB-P 
	348 
	model was close to 2 in the most cases, which made the NB-P model similar to the NB-2 model (e.g., NB-P with 
	349 
	350 
	the NB1-L and NB2-L appeared to be better models in terms of almost all the performance measures. These fndings 
	the NB1-L and NB2-L appeared to be better models in terms of almost all the performance measures. These fndings 
	showed that even though the NBP-L model o˙ers a more fexible variance structure and more ability to ft to complex 

	data, it might not always be the best choice. In other words, the choice of the variance structure is not only dependent 
	upon the dataset being analyzed, but also depends on the formulation of the NB model. These results suggest that, 
	354 
	even though the mixed NB-L distribution provides the model with another source of variation, the variance structure 
	355 
	still matters and should be considered in the SPF development process. 
	356 
	Finally, the e˙ect of using di˙erent dispersion structures was examined. All the models with varying dispersion 
	357 
	parameter outperformed the models with fxed dispersion parameter. These fndings support the results of 
	Miranda
	-


	358 
	Moreno et al. 
	Moreno et al. 
	(2005) and 
	Lord and Park 
	(2008) that the varying dispersion parameter can better capture the structured 

	359 
	variations observed in the dataset. The traditional NB models showed better performance when formulated by the 
	360 
	AADT and length dependent dispersion functions (e.g., dispersion functions (1) and (2)); however, the NB-L models 
	361 
	favored the length-only dependent dispersion functions more. Having excluded models with insignifcant coeÿcients, 
	362 
	dispersion function (1), dependent upon both length and AADT, and dispersion function (3), dependent on length only, 
	363 
	provided better statistical ft in the traditional NB models and the NB-L models, respectively. According to the results, 
	364 
	the following conclusions could be obtained. First, the functional form of the dispersion parameter can signifcantly 
	365 
	a˙ect the model performance. This has been documented in the literature that applying di˙erent dispersion functions 
	366 
	to the same model lead to di˙erent model performances (Geedipally et al., 
	to the same model lead to di˙erent model performances (Geedipally et al., 
	2009; 
	Cafso et al., 
	2010). However, the 

	367 
	improvements in the traditional NB models were more signifcant than the NB-L models. It was expected since the 
	368 
	NB-L models are typically characterized by smaller over-dispersion parameter and hence, are less sensitive to the 
	369 
	choice of the dispersion structure. Second, each NB parameterization calls for its own appropriate dispersion function. 
	370 
	This means that if, for instance, a NB-2 model is enhanced by using a specifc dispersion function, a NB-L model 
	371 
	is not essentially improved by using the same dispersion function. This study also found that, within the traditional 
	372 
	NB models, NB-1 shows more sensitivity to the dispersion function choice compared to the NB-2 and NB-P. This is 
	373 
	probably due to the less fexible variance structure of the NB-1 compared to the other two models. So, providing it with 
	374 
	an appropriate dispersion function could highly a˙ect its ability to account for the data heterogeneity. These results 
	375 
	support e.g. NB2 and NB-P) can 
	Wang et al. 
	(2019) fndings that more fexible variance structures in the NB models (

	376 
	even capture the variation in the dispersion parameter. Therefore, these models are less sensitive to the dispersion 
	377 
	structure. So, it can be concluded that researchers should choose the dispersion structure for each dataset (Geedipally 
	structure. So, it can be concluded that researchers should choose the dispersion structure for each dataset (Geedipally 

	378 
	et al., 
	et al., 
	2009), as well as for each parameterization of the crash-frequency model. 

	379 
	This study used a combination of metrics to evaluate and compare the models. Median absolute deviation (MAD) 
	380 
	381 
	(MASE) is a scale-free metric that normalizes the MAD by the average error. However, all these metrics are the mea
	-

	sures of accuracy of the prediction. To consider the prediction accuracy and complexity of the model simultaneously, 
	sures of accuracy of the prediction. To consider the prediction accuracy and complexity of the model simultaneously, 
	a cross-validation and an information criteria based method were used. These methods estimate the out of sample 

	accuracy using within sample fts (Vehtari et al., 
	accuracy using within sample fts (Vehtari et al., 
	2017). Leave-one-out cross-validation assesses the predictive accu
	-


	racy of the model by estimating the prediction error for the sample i without using it to train the model. However, 
	386 
	it requires re-ftting the model N times (N is the sample size) to calculate the predictive accuracy. In the method 
	387 
	proposed by lying process by using the sample draws from the full 
	Vehtari et al. 
	(2017), they approximated the under

	388 
	posterior distribution, p(.ðy), which is the typical outcome of any Bayesian analysis. Consequently, the leave-on-out 
	389 
	cross-validation could be approximated by ftting the model once. 
	390 
	Also, WAIC appeared to be a more robust metric compared to the Deviance Information Criteria (DIC) in the 
	391 
	Bayesian framework (Watanabe and Opper, 
	Bayesian framework (Watanabe and Opper, 
	2010). As 
	Geedipally et al. 
	(2014) mentioned, regardless of the similarity 

	392 
	of the estimates among the NB models, di˙erent parameterization of the model, especially di˙erent defnitions of the 
	393 
	likelihood functions in the hierarchical models, lead to di˙erent DIC values. Therefore, considering a fully Bayesian 
	394 
	alternative metric seems essential, especially when both likelihood function and dispersion structure vary across the 
	395 
	models. WAIC makes use of the entire posterior distribution and also is invariant to re-parameterization of the model 
	396 
	(Vehtari et al., 
	(Vehtari et al., 
	2017). In general, all the information criteria approaches interpret the e˙ective number of parameters 

	397 
	as a measure of the model complexity. Although both DIC and WAIC use a variance-based computation to estimate 
	398 
	the e˙ective number of parameters (Gelman et al., 
	the e˙ective number of parameters (Gelman et al., 
	2014), WAIC produces more reliable results as it calculates the 

	399 
	variance for each point separately (Vehtari et al., 
	variance for each point separately (Vehtari et al., 
	2017). Both LOO and WAIC showed superiority over the traditional 

	400 
	metrics such as AIC and DIC; however, they are computationally intensive and costly. In this study, we extracted N ×S 
	401 
	log-likelihood matrix, (where S is the number of simulation, and N is the number of observations) and then used the 
	402 
	R package, called "loo" and set up by 
	Vehtari et al. 
	(2018), to compute LOO and WAIC. 

	403 
	Finally, after excluding models with insignifcant estimates, the NB1-L and NB2-L models with length-only de
	-

	404 
	pendent dispersion function outranked the others in terms of almost all the metrics. However, within the NB-L models, 
	405 
	there was some discrepancy. NB2-L showed better performance in terms of WAIC, and MASE, whereas NB1-L out
	-

	406 
	performed the others in terms of LOO and MAD. These fndings justify the use of di˙erent metrics for evaluation and 
	407 
	comparison purposes. 
	408 

	6. Summary and Conclusion 
	6. Summary and Conclusion 
	409 
	NFAS roads comprise a signifcant part of the roadway network; however, not much research e˙orts have gone 
	410 
	toward accurately evaluating the safety of these roadways. As these roadways are characterized by di˙erent features 
	411 
	412 
	quantify the safety issues associated with them. The primary objective of this study was to evaluate the application 
	of di˙erent parameterizations of the negative binomial models in the SPF development of NFAS roadways. In the 
	414 frst level, both traditional NB and zero-favored NB (i.e., NB-L model) were considered to model the crash counts. 
	415 Then, for each model, three di˙erent variance structures were considered, leading to six di˙erent NB parameteriza
	-

	416 tions. Finally, for each of the six crash-frequency models, fve di˙erent dispersion structures were employed. Using 
	417 crash data, roadway inventory, and traÿc volume data from 2014-2018 in Virginia, this study showed that the NB-L 
	418 models ft better than the traditional NB models. Within the NB-L models also the NB1-L and NB2-L models showed 
	419 better fts. This study also found that the variance and dispersion structure choices are highly dependent upon the 
	420 NB parameterization. As opposed to the traditional NB models, the NB-L models performed better when using the 
	421 length-only dependent dispersion function. All the models were evaluated using various GOF measures, including two 
	422 recently documented fully Bayesian metrics, WAIC and LOO. This study provides additional insight into the choice of 
	423 the predictive model to evaluate the safety performance of NFAS roadways. The advanced models developed in this 
	424 study could contribute to the betterment of safety evaluation of these roadways and any other crash dataset that requires 
	425 a more fexible modeling structure. This study showed that a reasonably chosen variance and dispersion structure can 
	426 e˙ectively enhance the count models (even the more advanced models which have been proven that outperform the 
	427 traditional models) leading to better model performances, more accurate estimates, and hence more reliable decision 
	428 making. Using a more detailed dataset and the inclusion of other traÿc-related variables could further enhance the 
	429 model performance. This study did not separate di˙erent categories of NFAS roadways. Further work needs to be done 
	430 to develop SPF for each functional class individually. Also, separating the crash data by severity level (e.g., KABCO, 
	431 KAB, etc.) and crash type would further improve the predictive accuracy of the model. 
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